Learning Robust Recommenders through Cross-Model Agreement

Abstract

Learning from implicit feedback is one of the most common cases in the application of recommender systems. Generally speaking, interacted examples are considered as positive while negative examples are sampled from uninteracted ones. However, noisy examples are prevalent in real-world implicit feedback. A noisy positive example could be interacted but it actually leads to negative user preference. A noisy negative example which is uninteracted because of user unawareness could also denote potential positive user preference. Conventional training methods overlook these noisy examples, leading to sub-optimal recommendations.

Publication
Proceedings of the ACM Web Conference 2022

If you find this page helpful, consider sharing it 🙌