In this paper, we study the problem of user profiling in question answering communities. We address the problem by proposing a constrained co-embedding model (CCEM). CCEM jointly infers the embeddings of both users and words in question answering communities such that the similarities between users and words can be semantically measured. Our CCEM works with constraints which enforce the inferred embeddings of users and words subject to this criteria: given a question in the community, embeddings of users whose answers receive more votes are closer to the embeddings of the words occurring in these answers, compared to the embeddings of those whose answers receive less votes. Experiments on a Chinese dataset, Zhihu dataset, demonstrate that our proposed co-embedding algorithm outperforms state-of-the-art methods in the task of user profiling.
Supplementary notes can be added here, including code, math, and images.