Constrained co-embedding model for user profiling in question answering communities

Abstract

In this paper, we study the problem of user profiling in question answering communities. We address the problem by proposing a constrained co-embedding model (CCEM). CCEM jointly infers the embeddings of both users and words in question answering communities such that the similarities between users and words can be semantically measured. Our CCEM works with constraints which enforce the inferred embeddings of users and words subject to this criteria: given a question in the community, embeddings of users whose answers receive more votes are closer to the embeddings of the words occurring in these answers, compared to the embeddings of those whose answers receive less votes. Experiments on a Chinese dataset, Zhihu dataset, demonstrate that our proposed co-embedding algorithm outperforms state-of-the-art methods in the task of user profiling.

Publication
Proceedings of the 28th ACM International Conference on Information and Knowledge Management
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.