Beta-RecSys

Beta-RecSys is an open source project for Building, Evaluating and Tuning Automated Recommender Systems. Beta-RecSys aims to provide a practical data toolkit for building end-to-end recommendation systems in a standardized way. It provided means for dataset preparation and splitting using common strategies, a generalized model engine for implementing recommender models using Pytorch with a lot of models available out-of-the-box, as well as a unified training, validation, tuning and testing pipeline. Furthermore, Beta-RecSys is designed to be both modular and extensible, enabling new models to be quickly added to the framework. It is deployable in a wide range of environments via pre-built docker containers and supports distributed parameter tuning using Ray.

Zaiqiao Meng (蒙在桥)
Zaiqiao Meng (蒙在桥)
Lecturer (Assistant Professor)

My research focuses on the intersection of machine learning, knowledge graph, and natural language processing, with a current emphasis on the biomedical applications.